Extensions 1→N→G→Q→1 with N=C22×C4 and Q=D11

Direct product G=N×Q with N=C22×C4 and Q=D11
dρLabelID
C22×C4×D11176C2^2xC4xD11352,174

Semidirect products G=N:Q with N=C22×C4 and Q=D11
extensionφ:Q→Aut NdρLabelID
(C22×C4)⋊1D11 = C2×D22⋊C4φ: D11/C11C2 ⊆ Aut C22×C4176(C2^2xC4):1D11352,122
(C22×C4)⋊2D11 = C4×C11⋊D4φ: D11/C11C2 ⊆ Aut C22×C4176(C2^2xC4):2D11352,123
(C22×C4)⋊3D11 = C23.23D22φ: D11/C11C2 ⊆ Aut C22×C4176(C2^2xC4):3D11352,124
(C22×C4)⋊4D11 = C447D4φ: D11/C11C2 ⊆ Aut C22×C4176(C2^2xC4):4D11352,125
(C22×C4)⋊5D11 = C22×D44φ: D11/C11C2 ⊆ Aut C22×C4176(C2^2xC4):5D11352,175
(C22×C4)⋊6D11 = C2×D445C2φ: D11/C11C2 ⊆ Aut C22×C4176(C2^2xC4):6D11352,176

Non-split extensions G=N.Q with N=C22×C4 and Q=D11
extensionφ:Q→Aut NdρLabelID
(C22×C4).1D11 = C44.55D4φ: D11/C11C2 ⊆ Aut C22×C4176(C2^2xC4).1D11352,36
(C22×C4).2D11 = C22.C42φ: D11/C11C2 ⊆ Aut C22×C4352(C2^2xC4).2D11352,37
(C22×C4).3D11 = C2×Dic11⋊C4φ: D11/C11C2 ⊆ Aut C22×C4352(C2^2xC4).3D11352,118
(C22×C4).4D11 = C2×C44.C4φ: D11/C11C2 ⊆ Aut C22×C4176(C2^2xC4).4D11352,116
(C22×C4).5D11 = C44.48D4φ: D11/C11C2 ⊆ Aut C22×C4176(C2^2xC4).5D11352,119
(C22×C4).6D11 = C2×C44⋊C4φ: D11/C11C2 ⊆ Aut C22×C4352(C2^2xC4).6D11352,120
(C22×C4).7D11 = C23.21D22φ: D11/C11C2 ⊆ Aut C22×C4176(C2^2xC4).7D11352,121
(C22×C4).8D11 = C22×Dic22φ: D11/C11C2 ⊆ Aut C22×C4352(C2^2xC4).8D11352,173
(C22×C4).9D11 = C22×C11⋊C8central extension (φ=1)352(C2^2xC4).9D11352,115
(C22×C4).10D11 = C2×C4×Dic11central extension (φ=1)352(C2^2xC4).10D11352,117

׿
×
𝔽